GERSIT,
S A

18 56

7 Q
TRYLAS

strac

We have developed a method that facilitates the independent insertion of unnatural
amino acids into every position within a protein sequence. These DNA libraries are
created in vitro by first creating a double strand break by insertion of a transposon
followed by removal and ligation of a reading frame selectable linker containing the
amber codon, TAG. The described method results in the random replacement of a single
amino acid codon with the amber codon, TAG. This library then allows us to control
proteins with light by incorporating unique functional groups at the site of mutation.
Scanning photo-reactive amino acids may allow for structural information to be obtained
as well as developing new protein function efficiently. This method can also be adapted
to scan any of the 20 natural amino acids.
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Rationally changing protein sequence can aid in the study of protein structure and
function. Techniques used to create changes in a protein sequence include,
Quickchange mutagenesis (Stratagene), error-prone PCR (1), DNA shuffling (2), and
most recently introducing unique function through the incorporation of unnatural amino
acids in vivo (3). For example, incorporation of the wunnatural amino acid,
p-benzoylphenylalanine (pBpa) allows for intrinsic protein-protein interactions to be
covalently trapped (4). This allows for protein-protein interacting surfaces to be mapped
using mass spectrometry. The properties of the p-benzoylphenylalanine are further
enhanced by using an isotopically labeled analog, allowing for a unique fingerprint, M
and M+11 to be obtained (5).
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Incorporating [D11]-pBpa at every position of a protein would aid in identifying
unknown interactions. However when looking at how one would go about creating such
mutations, every codon position of the protein would need to be mutated to a TAG.
Using traditional approaches, such as quickchange mutagenesis would not be
practical. A 200 amino acid protein would require 400 unique oligonucleotides!

“Quickchange” mutagenesis (Stratagene)
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To achieve a random mutagenesis method, that does not require unique mutagenic

oligonucleotides, the enzymatic properties of the MuA transposase were very appealing

to us. It was thought that the transposase could be used to randomly insert throughout a

gene allowing for insertion of a reading frame selectable linker to be inserted. The

properties of the transposon have been used previously to create random codon

deletions (6), insertions (7) and random 15 base pair insertions (8) into a gene. It has

also been shown that the transposon inserts once per target plasmid and without

sequence specificity (9). However there is no control of creating only in-frame
mutations.
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We chose to test our method on glutathione S-transferase (GST), since it is a known
homodimer and known to cross-link when pBpa is incorporated (10). We wanted to
create a system that when the scanned codon was inserted inframe there would be
translation of a selectable phenotype. Our design was based off of a non-biased reading
frame selection plasmid reported by Lutz et al (11). The target gene, gst, is fused to the
N-terminus of the VMA intein and the linker containing the scanning codon, contains the
C-terminus of the VMA intein and B-lactamase.

Once the transposon reaction has been completed and the transposon and 3
nucleotides are removed from the library by digesting with unique restriction
endonucleases, Mlyl. A linker, which replaces the random codon with the scanning
codon and selects for the correct reading frame is then inserted. Removal of the linker
with Mlyl followed by intramolecular ligation leaves a codon scar with no additional
nucleotides.

Codon Scanning Mutagenesis and Following a single clone through the process
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In the sequencing example, the 5 base pair duplication would be
AACAC, where the codon ACA, N2N:N« is removed by Miy digestion.
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O O Sequence of glutathione S-transferase with the linker inserted in-frame
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From the library of TAG mutants, 10 were chosen to represent the scanned library. All
amber mutants of GST were cloned into pPBADmycHisA and transformed into E. coli with
pSUP-pBpa (12). All expressions were done on a 50 mL scale in LB media
supplemented with 20 mM pBpa (racemic) (13). (a) 10 TAG mutants in the presence and
absence of pBpa. (b) Photoactivitv of hiah expressior -
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onclusions

We have created a non-PCR based mutagenesis method, Codon Scanning
Mutagenesis. This method allows for every possible position in a protein sequence to be
mutated. There are no limitations in creating mutations, unlike traditional random
mutagenesis methods, where amino acid mutations are limited by the redundancy of the
genetic code.

Traditional Random Mutageneis:
9}3§:Gly

5'GGA.TCCATC.CCCACC3
N-Gly.Ser.lle.Pro.Thr-C

Fist bt of codon 5" end)

AGG=Arg m < a .
oG

veu su[uny o [usy o
i e s

DNA Sequence:
Protein Sequence:

Codon Scanning Mutagenesis
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This method is also user defined, not only is the codon to be scanned specifically
selected but the number of times it is scanned is also determined by the user. By using
codon scanning mutagenesis to incorporate [D«]-pBpa, identifying protein-protein
interactions will be greatly enhanced. This method will also allow for the creating of
proteins with improved or novel function that would otherwise not be feasible with
traditional methods.
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